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Correlation in the Al plasma excitation
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Abstract. The density-density correlation function in elementary excitations of the interacting electron gas
is calculated from a simple model of the dynamic form factor. For the Al plasma excitation, a correlation
length of ≈0.2 nm is found. It is shown that the small correlation length does not contradict the surprisingly
large coherence length of almost 10 nm recently found in inelastic interference experiments. The difference
of nearly 2 orders of magnitude can be traced back to the long range Coulomb interaction between probe
and target electrons.

PACS. 34.80.Pa Coherence and correlation in electron scattering – 71.45.Gm Exchange, correlation,
plasmons – 82.80.Pv Electron spectroscopy

1 Introduction

The correlation length in solid state plasmas has been a
matter of concern since many decades. It is reasonable to
assume that the movement of electrons is correlated over
a distance of the order of magnitude of the Thomas-Fermi
screening length. A word of caution is in place here be-
cause the Thomas-Fermi screening length is a static quan-
tity whereas the electrons in a solid state plasmon oscillate
at a frequency of 1015 Hz. Since the plasmon is a coher-
ent superposition of electron-hole pairs [1] the exchange-
correlation hole [2] might serve as another length scale.
In metals, both the static screening length and the ex-
tension of the exchange-correlation hole amount to some
Ångstroms, roughly speaking the inter-electron distance.

A simple classical argument suggests to define the ex-
tension of the plasmon as the product of the lifetime and
the group velocity. For Al, this was found to be 0.4 nm [3],
a value seemingly in agreement with early experiments
on the spatial resolution in plasmon energy filtered im-
ages [4]. However, more recently Lichte and coworkers [5,6]
reported interference experiments with fast electrons hav-
ing excited a plasmon in Al. Contrary to the early predic-
tions they found a coherence length of almost 10 nm from
fringe contrast in the inelastic hologram.

The situation appears even more confusing when the
uncertainty principle is used to determine the (coherent)
extension of the plasmon scattered electron: this is by
definition δx = �/

√〈δq2〉. Since the scattering distribu-
tion is a Lorentzian (the variance of which is infinite) the
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cohrence length of the scattered electron comes out as
δx = 0.

Applying the Wiener-Khinchin theorem it is shown
that the density-density correlation function of a charge
oscillation in a medium is related to its dynamic form
factor which in turn is accessible by inelastic scattering
experiments with fast electrons. We are then in a position
to work out the relationship between the density correla-
tion function, experimentally determined scattering cross
sections and the coherence of the probe electrons. We find
that the experimentally determined coherence length is
precisely predicted by theory, and that this is consistent
with the small correlation length in solid state plasmas.

With the time-dependent density autocorrelation in
the ground state of a quantum mechanical system

p(r, t) =
∫

d3r′〈n(r + r′, t)n(r′, 0)〉 (1)

where n(r) =
∑

i δ
3(r̂i−r) is the particle density operator

we can write the density autocorrelation function of an
eigenmode of energy E of this system as

pE(r) =
1

2π�

∫
dteiEt/�p(r, t). (2)

2 The density-density correlation function
in the plasmon

According to the Wiener-Khinchin theorem and the fact
that the operator FT of the Fourier transformation is lin-
ear we have

FTr[pE(r)] =
1

2π�

∫
dt eiEt/�〈nq(t)n−q(0)〉. (3)
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where
nq = FTr[n(r, t)] (4)

is the Fourier transform of the particle density operator.
It can be shown [7] that the dynamic form factor is

S(q, E) =
1

2π�

∫
dteiEt/�〈nq(t)n−q(0)〉. (5)

Comparing equations (3) and (5) we see that

pE(r) = FTq[S(q, E)]. (6)

Note that we applied the Wiener-Khinchin theorem to op-
erators. Although equation (5) has a product of density
operators on the right hand side the left hand side is not
a product any longer due to the expectation value. Only
the static form factor S(q, 0), i.e. the quantity describing
elastic scattering decomposes into a product, and one re-
trieves the well-known theorem that the Fourier transform
of the absolute square of the scattering amplitude is the
autocorrelation of the static charge density.

Knowledge of the dynamic form factor S(q, Epl) for
the plasma oscillation at energy Epl immediately gives
the density autocorrelation, equation (6). One can either
calculate S(q, Epl) for a given system, or derive it from
experiment since the dynamic form factor relates to the
double differential inelastic scattering cross section as [7]

∂2σ

∂E∂Ω
=

4γ2

q4a2
0

k

k0
S(q, E), (7)

where a0 = 4πε0�
2/me2 is the Bohr radius, and γ is a

relativistic factor. Equation (7) is valid in the first Born
approximation for an incident plane wave, and for single
scattering [8,9].

Experimentally, the inelastic electron scattering cross
section for cubic systems is isotropic and is to a good
approximation Lorentzian in wave number transfer q, with
a cutoff qc. It then follows that the dynamic form factor
must be proportional to q2 up to the cutoff and vanish
thereafter.

The plasmon in simple metals is a well defined elemen-
tary excitation. Moreover in cubic systems such as Al these
excitations are isotropic. Ignoring dispersion and lifetime
broadening the dynamic form factor reads

S(q, E) = q · q δ(E − Epl). (8)

In this approximation the Fourier transform equa-
tion (6) can be performed immediately

pE(r) = 2π

∫ qc

qe

q2S(q, E)dq

∫ π

0

dϑ sin ϑeiqr cos ϑ

= 4π

∫ qc

qe

q4 sin(qr)
qr

dq δ(E − Epl) (9)

where we have used the fact that no wave number transfer
less than the characteristic transfer qe = k0E/(2E0) can
occur.
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Fig. 1. Density autocorrelation function of the Al plasma ex-
citation. Full line: equation (9), dashed line: projection onto
plane of observation, equation (10). Abscissa in nm.

If the density correlation is studied experimentally, e.g.
by an electron interferometer or by phase contrast imag-
ing, this will be done in an electron microscope. The spa-
tial information available will then be extracted from a
projection onto the image plane with coordinates x (which
by Fourier transform corresponds to the subspace in re-
ciprocal space subtended by the diffraction plane). When
comparing predictions with experimental results one is
therefore rather interested in the z-projected correlation
function p̄ =

∫
p(r)dz. This is the two-dimensional Fourier

transform with respect to the coordinates qx in the diffrac-
tion plane

p̄E(x) = FTqx [S(q, E)] =
∫ qc

0

S(q, E)eiqxxd2q

= 2π

∫ qc

0

S(q, E)eiqx cos ϕqdqdϕ

= 2π

∫ qc

0

(
q2
e +q2

)
J0(qx)qdq δ(E−Epl). (10)

This integral can be performed analytically. Results are
shown for Al, compared to the 3-dimensional correlation
function, in Figure 1. Parameters were qE = 0.0938/nm
and qc = 15/nm.

The first zero is found at 0.2 nm for the projected cor-
relation function. Its FWHM is at 0.12 nm, and the en-
veloppe has a value of 0.1 at a distance of 0.77 nm. This
shows that contrary to intuitive arguments the collective
oscillation of the nearly free electrons in aluminium has
low coherence. The average distance of conduction elec-
trons in Al in the ground state is 0.22 nm. The electric
field of an oscillating charge is so strongly screened that
the second nearest neighbours react only slightly. When
excited (e.g. by a fast electron) the electrons in the solid
state plasma rearrange such that at a distance of 0.35 nm
from the excitation a depletion zone is created whereas at
0.55 nm a higher density of electrons is found. We note in
passing that a more rigorous description including plas-
mon dispersion, lifetime broadening and a smooth decay
of the cross section instead of a sharp cutoff at qc will
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Fig. 2. Schematic of an interference experiment with an elec-
trostatic biprism. [6]. Electrons coherently emerging a distance
d apart from the specimen form a damped sinusoidal interfer-
ence pattern in the observation plane after having passed the
biprism (B). DP is the diffraction plane of the objective lens.

slightly alter these results with a tendency to reduce the
amplitude of the wiggles.

In principle, these wiggles are well beyond the reso-
lution limit of modern electron microscopes. However, in
energy filtered imaging in the transmission electron micro-
scope (EFTEM) with the pass energy set at the plasma
frequency, correlations are not visible. What is visible is
the localization of excitations. Since the nearly free elec-
trons in the target are delocalized the plasma excitation
may take place at any position in the specimen. The
EFTEM image is a homogeneously illuminated area.

3 Coherence length of plasmon scattered
electrons

In order to make the correlation visible one needs an inter-
ferometer. Lichte and coworkers [5,6] reported interference
experiments with fast electrons having excited a plasmon
in Al. They found a coherence length of almost 10 nm from
fringe contrast in the inelastic hologram. The experiment
is sketched in Figure 2.

How can this surprisingly high value be reconciled with
a correlation length of only 0.2 nm?

In their experiment partial waves emerging from points
a distance d apart in the specimen were brought to inter-
ference by use of an electrostatic biprism. The distance d
could be tuned by the voltage on the biprism. Fringe con-
trast decreased beyond the 10% level when d approached
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Fig. 3. Mutual coherence function µE of electrons emerging
from the exit plane of an Al specimen, after excitation of a
plasmon. Abscissa in nm.

10 nm1. The contrast measured in this type of experiment
is the mutual coherence function [11] of electrons having
suffered a plasmon loss.

Similar to the previous reasoning, and according to
the Wiener-Khinchin theorem, the mutual coherence func-
tion of the fast probe electron is the Fourier transform of
the energy filtered electron density distribution ρE in the
diffraction plane of the objective lens:

µE(x) = FTqx [ρE(qx)]. (11)

Here we have neglected aberrations of the post-specimen
lenses. Since ρE is proportional to the experimentally ac-
cessible double differential scattering cross section, equa-
tion (7) we can assume that this is a Lorentzian angu-
lar distribution with cutoff qc. The Fourier transform can
be performed exactly as that of the dynamic form factor,
equation (10), and we arrive at

µE(x) = FTqx

[
1

q2
E + q2

]
=

∫ qc

0

1
q2
E + q2

eiqxd2q

= 2π

∫ qc

0

1
q2
E + q2

J0(qx)qdq. (12)

This function is shown in Figure 3 for the Al plasmon.
The 10% level is at a distance of 9.1 nm, in excellent
agreement with the interference experiment of Lichte and
coworkers. Figure 4 shows the first 2 nm together with the
2-D correlation function. The mutual coherence function
is so broad because of the long range Coulomb interac-
tion between target charges and the probe electron. So it
may happen that two partial inelastically scattered waves
emerging from the specimen a distance d apart have ex-
cited the same plasmon and thus are coherent over that
distance although the plasmon per se is very localized.
The only physical information on the target is contained

1 A recent biprism experiment of the same group with a field
emission machine shows fringe contrast up to more than 20 nm.
Preliminary calculations yield good agreement with the present
theory [10].
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Fig. 4. Full line: Mutual coherence function µE of electrons
as in (a). Dashed line: 2-dimensional projection of the density
correlation function, equation (10). Abscissa an nm.

in the faint wiggles at the first nm which are in fact rem-
nants of the strong oscillations in the correlation function
with a period of ≈0.55 nm. It seems difficult to extract
these wiggles from the contrast observed in a bisprism
experiment.

4 Conclusion

In conclusion, it was shown how the small correlation
length in a plasma excitation can be reconciled with the
coherence length of almost 10 nm found in inelastic inter-
ference experiments. The difference of nearly 2 orders of
magnitude can be traced back to the long range Coulomb
interaction between probe and target electrons. It is the
high coherence of the probe electrons, not the correlation
of the target electrons that gives rise to the strong
interference fringes. A consequence is that interference
experiments in the electron microscope cannot directly
reveal correlation lengths, at least not in the low energy

loss region. It is possible that the faint wiggles visible in
the coherence function can be used to obtain information
on the correlation length. Another surprising prediction is
that even without spatial correlation in the target, e.g. for
core level ionization, the biprism experiment would reveal
similar fringes as for the plasma excitation.
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